Local superfluidity at the nanoscale
نویسندگان
چکیده
منابع مشابه
Local quantum coherence and superfluidity
We consider a model of bosons on a regular lattice with a kinetic energy due to hopping among sites and a potential energy due to strong on site interaction. A superfluid phase is expected when the ground state of the local energy is doubly degenerate. We consider a new scheme of simmetry breaking associated to the superfluid phase in which the order parameter is the statistical average of the ...
متن کاملProbing local ionic dynamics in functional oxides at the nanoscale.
A scanning probe microscopy technique for probing local ionic dynamics in electrochemically active materials based on the first-order reversal curve current-voltage (FORC-IV) method is presented. FORC-IV imaging mode is applied to a Ca-substituted bismuth ferrite (Ca-BFO) system to separate the electronic and ionic phenomena in this material and visualize the spatial variability of these behavi...
متن کاملCensored at the Nanoscale
As soon as researchers uncovered microorganisms’ abilities to communicate, efforts began to control the conversation. Among other cellular functions, quorum-sensing is implicated in biofilm formation, a problematic phenomena in a variety of settings such as persistence of infections (Costerton et al., 1999; Rutherford and Bassler, 2012) and biofouling of waterand wastewatertreatment membranes (...
متن کاملThermometry at the nanoscale.
Non-invasive precise thermometers working at the nanoscale with high spatial resolution, where the conventional methods are ineffective, have emerged over the last couple of years as a very active field of research. This has been strongly stimulated by the numerous challenging requests arising from nanotechnology and biomedicine. This critical review offers a general overview of recent examples...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physical Review B
سال: 2013
ISSN: 1098-0121,1550-235X
DOI: 10.1103/physrevb.88.064512